Crystal Structure

$\mathrm{Ni}^{\text {II }}$ and $\mathrm{Zn}^{\text {II }}$ complexes of the hexadentate macrocyclic ligand cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetra-decane-6,13-diamine

Paul V. Bernhardt

Department of Chemistry, University of Queensland, Brisbane 4072, Australia Correspondence e-mail: bernhardt@chemistry.uq.edu.au

Received 21 February 2000
Accepted 10 March 2000
The title pendent-arm macrocyclic hexaamine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ complexes (both as perchlorate salts), namely (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetra-decane-6,13-diamine- $\kappa^{6} N$)nickel(II) diperchlorate, [Ni$\left.\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$, and (cis-6,13-dimethyl-1,4,8,11-tetraaza-cyclotetradecane-6,13-diamine- $\kappa^{6} N$)zinc(II) diperchlorate, $\left[\mathrm{Zn}\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$. Distortion of the $\mathrm{N}-M-\mathrm{N}$ valence angles from their ideal octahedral values becomes more pronounced with increasing metal-ion size and the present results are compared with other structures of this ligand.

Comment

The coordination chemistry of the isomeric pendent-arm macrocycles trans- and cis-6,13-dimethyl-1,4,8,11-tetraaza-cyclotetradecane-6,13-diamine (L^{1} and L^{2}, respectively) has revealed a number of interesting variations in the structural and physical properties of their complexes. Complexes of the hexadentate-coordinated trans isomer (Curtis et al., 1987; Bernhardt et al., 1989, 1990, 1991; Borzel et al., 1998) are more common than the corresponding cis complexes (Bernhardt et al., 1992, 1993, 1997; Lye et al., 1994). It is an interesting feature that L^{1} and L^{2} can only bind in one configuration when coordinated as hexadentates, so the structure of the organic ligand determines the isomerism of the resulting complexes.

The hexadentate trans isomers coordinate such that the metal is coplanar with the four secondary amines, and the pendent amines bind in trans coordination sites. By contrast, in the corresponding cis isomers, the macrocycle adopts a folded conformation and the pendent amines coordinate in cis sites. Molecular-mechanics calculations (Bernhardt \& Comba, 1991) predicted that the cis isomer L^{2}, bound as a hexadentate, would be able to complex both small and large metal ions, whereas the hexadentate-coordinated trans isomer could only accommodate metals up to a certain size, until one or both axial $M-\mathrm{N}$ bonds were broken as a consequence of strain in the complex. These computational results have been borne
out by subsequent experimental data.
The two complexes $\left[\mathrm{Ni}^{2}\right]\left(\mathrm{ClO}_{4}\right)_{2},(\mathrm{I})$, and $\left[\mathrm{Zn} L^{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (II), are isomorphous and the absolute configuration was determined in each case. The $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ crystals studied here, both grown from racemic solutions, were found to be enantiomorphs. Views of the two complex cations are shown in Figs. 1 and 2. The folded conformation of the macrocycle is evident, with the coordinated four secondary amines having the same absolute configuration i.e. $R R R R$ (SSSS). Each complex cation has (non-crystallographic) C_{2} symmetry; the principal axis bisects the $\mathrm{N} 5-M-\mathrm{N} 6$ angle, and the $M-\mathrm{N}$ bond lengths separate into three distinct pairs (Tables 1 and $3)$. Both macrocyclic five-membered chelate rings adopt the same conformation ($\delta \delta$ or $\lambda \lambda$), where the $\mathrm{C}-\mathrm{C}$ bond in each ring is oblique to the C_{2} axis. This conformation was predicted (Bernhardt \& Comba, 1991) to be dominant for complexes containing both small and large metal ions, and indeed no other conformation of a hexadentate-coordinated complex of L^{2} has been identified. Hydrogen bonding between perchlor-ate-O atoms and most amine-H atoms is found (Tables 2 and 4). These hydrogen bonds result in chains comprising cations linked by perchlorate anions extending along the b axis.

$\left[M L^{1}\right]^{n+}$

$\left[M L^{2}\right]^{n+}$
(I) $M=\mathrm{Ni}$
(II) $M=\mathrm{Zn}$

The $M-\mathrm{N}$ bond lengths in both structures are typical of hexaamine complexes of $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$, and are significantly longer than those observed in the respective trans isomers: $\left[\mathrm{NiL}{ }^{1}\right]\left(\mathrm{ClO}_{4}\right)_{2} 2.07_{\text {sec }}$ and $2.13_{\text {prim }} \AA$ (Curtis et al., 1987); $\left[\mathrm{Zn} L^{1}\right]\left(\mathrm{ClO}_{4}\right)_{2} 2.10_{\text {sec }}$ and $2.21_{\text {prim }} \AA$ (Bernhardt et al., 1991), where subscripts sec and prim indicate secondary and primary N atoms, respectively. This is a feature that has now been observed in the trans and cis isomers of a number of complexes in this series ($\mathrm{Co}^{\text {III }}, \mathrm{Cr}^{\text {III }}, \mathrm{Ni}^{\text {II }}$ and $\mathrm{Zn}^{\text {II }}$), where the trans isomers invariably exhibit unusually short $M-\mathrm{N}$ bond lengths in contrast to the corresponding coordinate bond lengths in the cis isomers, which are normal. Molecular-

Figure 1
View of (I) showing 30% probability ellipsoids.

Figure 2
View of (II) showing 30% probability ellipsoids (H atoms omitted).
mechanics calculations predicted this disparity some time ago (Bernhardt \& Comba, 1991).

The valence angles involving the metal centres (Tables 1 and 3) indicate that the larger $\mathrm{Zn}^{\mathrm{II}}$ ion exhibits a greater distortion from octahedral geometry than its $\mathrm{Ni}^{\mathrm{II}}$ analogue. This again is a general trend across the series of known structures of L^{2} complexes ranging from the smallest ($\mathrm{Co}^{\mathrm{III}}$; Bernhardt et al., 1997) to the largest ($\mathrm{Pb}^{\mathrm{II}}$; Lye et al., 1994). There are a number of structural indicators of this distortion. It may be viewed as a pseudo-trigonal twist of the N1-N2-N5 and N4-N3-N6 octahedral faces, by analogy with tris-bidentate complexes. This definition is somewhat limited in this case as there is no threefold axis in complexes of L^{2}. A more reliable indicator of the distortion present in these complexes is the N5-M-N6 valence angle, which increases with the $M-\mathrm{N}$ bond length, and this is illustrated in Fig. 3. The $\mathrm{Cd}^{\mathrm{II}}$ (Bernhardt et al., 1992) and $\mathrm{Pb}^{\mathrm{II}}$ (Lye et al., 1994) structures exhibit somewhat exaggerated bite angles caused by (or resulting in) coordination of perchlorate anions, and their structures approximate distorted square-antiprismatic geometries $\left(\mathrm{N}_{6} \mathrm{O}_{2}\right)$. It is difficult to say whether the presence of these weakly bound ions $\left(M-\mathrm{O}>3.0 \AA\right.$) in the $\mathrm{Cd}^{\mathrm{II}} / \mathrm{Pb}^{\mathrm{II}}$ structures significantly perturb the valence angles involving the coordinated macrocycle or, conversely, whether these distortions are driven by the macrocycles, which prize open the N5-M-N6 angles thus making room for incoming ligands.

Figure 3
Plot of observed $\mathrm{N} 5-M-\mathrm{N} 6$ angle $\left({ }^{\circ}\right)$ as a function of average $M-\mathrm{N}$ bond length (\AA) for hexadentate-coordinated complexes of L^{2}.

The observed distortions from octahedral geometry with increasing $M-\mathrm{N}$ bond length were predicted by molecularmechanics calculations. However, electronic contributions from transition metal ions will oppose distortions away from octahedral geometry (ligand-field stabilization energy), and neglecting this effect can lead to an overestimation of the observed distortion (Bernhardt \& Comba, 1993). That is, the geometries of the $d^{10} \mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$ complexes represent true ligand-dictated distortions, whereas the $\mathrm{Co}^{\mathrm{III}}, \mathrm{Cr}^{\mathrm{III}}$ and $\mathrm{Ni}^{\mathrm{II}}$ structures reflect a balance between ligand-directed steric and metal-based electronic effects.

Experimental

The title complexes were both synthesized readily by mixing equimolar amounts of the metal ion and ligand hydrochloride salt $\left(L^{2} \cdot 6 \mathrm{HCl}\right)$ in water adjusted to pH 7 with NaOH solution. Both compounds were precipitated by addition of excess NaClO_{4}. Crystals of each complex were obtained by slow evaporation of their aqueous solutions.

Compound (I)

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=516.03$
Monoclinic, $P 2_{1}$
$a=9.198$ (4) \AA
$b=12.771$ (1) \AA
$c=9.880(5) \AA$
$\beta=113.09(2)^{\circ}$
$V=1067.6(7) \AA^{3}$
$Z=2$
$D_{x}=1.605 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10-14^{\circ}$
$\mu=1.210 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, purple
$0.50 \times 0.50 \times 0.50 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$R_{\text {int }}=0.026$
$\omega-2 \theta$ scans
$\theta_{\text {max }}=24.98^{\circ}$
$h=0 \rightarrow 10$
sorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.404, T_{\text {max }}=0.546$
2097 measured reflections
1971 independent reflections
1892 reflections with $I>2 \sigma(I)$
$k=0 \rightarrow 15$
$l=-11 \rightarrow 10$
3 standard reflections frequency: 120 min intensity decay: $<5 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.117$
$S=1.084$
1971 reflections
278 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0981 P)^{2}\right. \\
& \quad+0.2008 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.57 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.83 \text { e } \AA^{-3} \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter }=0.03(3)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I).

$\mathrm{Ni}-\mathrm{N} 1$	$2.075(5)$	$\mathrm{Ni}-\mathrm{N} 6$	$2.124(5)$
$\mathrm{Ni}-\mathrm{N} 3$	$2.077(5)$	$\mathrm{Ni}-\mathrm{N} 4$	$2.126(5)$
$\mathrm{Ni}-\mathrm{N} 5$	$2.096(5)$	$\mathrm{Ni}-\mathrm{N} 2$	$2.147(5)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 3$	$171.0(2)$	$\mathrm{N} 5-\mathrm{Ni}-\mathrm{N} 4$	$161.63(18)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 5$	$78.39(19)$	$\mathrm{N} 6-\mathrm{Ni}-\mathrm{N} 4$	$79.5(2)$
$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 5$	$107.0(2)$	$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 2$	$91.0(2)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 6$	$106.6(2)$	$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 2$	$82.9(2)$
$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 6$	$79.5(2)$	$\mathrm{N} 5-\mathrm{Ni}-\mathrm{N} 2$	$81.3(2)$
$\mathrm{N} 5-\mathrm{Ni}-\mathrm{N} 6$	$102.9(2)$	$\mathrm{N} 6-\mathrm{Ni}-\mathrm{N} 2$	$162.4(2)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 4$	$83.47(19)$	$\mathrm{N} 4-\mathrm{Ni}-\mathrm{N} 2$	$101.98(19)$
$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 4$	$91.33(19)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 C^{\mathrm{i}}$	0.91	2.41	3.192 (10)	144
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1 D$	0.91	2.49	3.283 (10)	146
N3-H3 \cdots O2B ${ }^{\text {ii }}$	0.91	2.14	3.039 (8)	167
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2 B^{\text {'ii }}$	0.91	2.08	2.917 (11)	152
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 2 A$	0.91	2.38	3.213 (7)	151
N4-H4 \cdots O2D	0.91	2.57	3.271 (9)	135
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2 D^{\text {ii }}$	0.90	2.56	3.056 (8)	116
N5-H5A ${ }^{\text {a }}$ O2 $D^{\text {,ii }}$	0.90	2.09	2.819 (10)	137
N5-H5B \cdots O1C ${ }^{\text {i }}$	0.90	2.62	3.389 (13)	144
N6-H6A \cdots O2 $B^{\text {iii }}$	0.90	2.31	3.120 (8)	150
N6-H6A \cdots O2 $B^{\text {iiii }}$	0.90	2.64	3.53 (3)	168
$\mathrm{N} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2 \mathrm{C}^{\mathrm{ii}}$	0.90	2.50	3.341 (10)	156
N6-H6B \cdots O2 $C^{\text {'ii }}$	0.90	2.49	3.382 (13)	170

Symmetry codes: (i) $1-x, \frac{1}{2}+y, 1-z$; (ii) $1+x, y, z$; (iii) $-x, \frac{1}{2}+y,-z$.

Compound (II)

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$D_{x}=1.611 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=522.69$
Monoclinic, $P 2_{1}$
$a=9.075$ (1) A
$b=12.891$ (1) \AA
$c=9.963$ (3) A
$\beta=112.438(9)^{\circ}$
$V=1077.3$ (4) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10-14^{\circ}$
$\mu=1.439 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colourless
$0.30 \times 0.13 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.779, T_{\text {max }}=0.866$
2115 measured reflections
1987 independent reflections
916 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.175$
$S=0.987$
1987 reflections
258 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0782 P)^{2}\right]$

$$
\begin{aligned}
& R_{\text {int }}=0.073 \\
& \theta_{\max }=24.97^{\circ} \\
& h=0 \rightarrow 10 \\
& k=0 \rightarrow 15 \\
& l=-11 \rightarrow 10 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: }<5 \%
\end{aligned}
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.66 \mathrm{e}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $=-0.04(5)$

Table 3
Selected geometric parameters ($\left(\begin{array}{l} \\ \left.,^{\circ}\right) \text { for (II). }\end{array}\right.$

$\mathrm{Zn} 1-\mathrm{N} 6$	$2.128(14)$	$\mathrm{Zn} 1-\mathrm{N} 1$	$2.170(13)$
$\mathrm{Zn} 1-\mathrm{N} 5$	$2.134(12)$	$\mathrm{Zn} 1-\mathrm{N} 4$	$2.219(13)$
$\mathrm{Zn} 1-\mathrm{N} 3$	$2.141(15)$	$\mathrm{Zn} 1-\mathrm{N} 2$	$2.255(12)$
			$89.7(5)$
$\mathrm{N} 6-\mathrm{Zn} 1-\mathrm{N} 5$	$108.9(6)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 4$	$79.7(5)$
$\mathrm{N} 6-\mathrm{Zn} 1-\mathrm{N} 3$	$77.4(5)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 4$	$156.5(5)$
$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 3$	$113.7(6)$	$\mathrm{N} 6-\mathrm{Zn} 1-\mathrm{N} 2$	$80.0(6)$
$\mathrm{N} 6-\mathrm{Zn} 1-\mathrm{N} 1$	$114.7(6)$	$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 2$	$79.2(5)$
$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 1$	$76.9(5)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 2$	$88.3(5)$
$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 1$	$161.5(5)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$102.5(5)$
$\mathrm{N} 6-\mathrm{Zn} 1-\mathrm{N} 4$	$78.2(6)$	$\mathrm{N} 4-\mathrm{Zn} 1-\mathrm{N} 2$	
$\mathrm{~N} 5-\mathrm{Zn} 1-\mathrm{N} 4$	$156.4(5)$		

Table 4
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.91	2.54	3.33 (2)	146
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1 \mathrm{C}$	0.91	2.57	3.39 (2)	150
N3-H3 \cdots O2 $B^{\text {ii }}$	0.91	2.28	3.14 (2)	158
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2 \mathrm{C}^{\text {jii }}$	0.91	1.99	2.88 (2)	166
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 2 \mathrm{~A}$	0.91	2.48	3.300 (16)	151
N4-H4 . O22	0.91	2.48	3.165 (18)	133
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2 D^{\mathrm{ii}}$	0.90	2.61	3.12 (2)	116
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2 D^{\prime \text { ii }}$	0.90	2.18	2.853 (19)	132
N6-H6A \cdots O2C ${ }^{\text {ii }}$	0.90	2.37	3.22 (2)	158
N6-H6A \cdots O2 $B^{\prime \text { iii }}$	0.90	2.29	3.18 (2)	169
N6-H6B \cdots O2 $B^{\text {iii }}$	0.90	2.41	3.201 (19)	147
N6-H6B \cdots O2C ${ }^{\text {jiii }}$	0.90	2.42	3.30 (3)	165

In both structures, rotational disorder in one of the perchlorate anions (about the $\mathrm{Cl} 2-\mathrm{O} 2 A$ bond) was modelled by refining atoms $\mathrm{O} 2 B / \mathrm{O} 2 B^{\prime}, \mathrm{O} 2 C / \mathrm{O} 2 C^{\prime}$ and $\mathrm{O} 2 D / \mathrm{O} 2 D^{\prime}$ with complementary occupancies and applying tetrahedral restraints to the O atoms of each contributor.

For both compounds, data collection: CAD-4 Manual (EnrafNonius, 1988); cell refinement: SET4 in CAD-4 Manual; data reduction: Xtal3.2 (Hall et al., 1992); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Financial support from the University of Queensland is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1588). Services for accessing these data are described at the back of the journal.

References

Bernhardt, P. V. \& Comba, P. (1991). Helv. Chim. Acta, 74, 1834-1840.
Bernhardt, P. V. \& Comba, P. (1993). Inorg. Chem. 30, 2798-2803.
Bernhardt, P. V., Comba, P., Curtis, N. F., Hambley, T. W., Lawrance, G. A., Maeder, M. \& Siriwardena, A. (1990). Inorg. Chem. 29, 3208-3213.
Bernhardt, P. V., Comba, P. \& Hambley, T. W. (1993). Inorg. Chem. 30, $2804-$ 2809.

Bernhardt, P. V., Comba, P., Hambley, T. W., Lawrance, G. A. \& Várnagy, K. (1992). J. Chem. Soc. Dalton Trans. pp. 355-359.

Bernhardt, P. V., Jones, L. A. \& Sharpe, P. C. (1997). Inorg. Chem. 36, $2420-$ 2425.

Bernhardt, P. V., Lawrance, G. A. \& Hambley, T. W. (1989). J. Chem. Soc. Dalton Trans. pp. 1059-1065.
Bernhardt, P. V., Lawrance, G. A., Maeder, M., Rossignoli, M. \& Hambley, T. W. (1991). J. Chem. Soc. Dalton Trans. pp. 1167-1170.

Borzel, H., Comba, P., Pritzkow, H. \& Sickmuller, A. F. (1998). Inorg. Chem. 37, 3853-3857.
Curtis, N. F., Gainsford, G. J., Hambley, T. W., Lawrance, G. A., Morgan, K. R. \& Siriwardena, A. (1987). J. Chem. Soc. Chem. Commun. pp. 295-297.
Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Lye, P. G., Lawrance, G. A., Maeder, M., Skelton, B. W., Wen, H. \& White, A. H. (1994). J. Chem. Soc. Dalton Trans. pp. 793-798.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

